0=-16t^2-10t+140

Simple and best practice solution for 0=-16t^2-10t+140 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2-10t+140 equation:



0=-16t^2-10t+140
We move all terms to the left:
0-(-16t^2-10t+140)=0
We add all the numbers together, and all the variables
-(-16t^2-10t+140)=0
We get rid of parentheses
16t^2+10t-140=0
a = 16; b = 10; c = -140;
Δ = b2-4ac
Δ = 102-4·16·(-140)
Δ = 9060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9060}=\sqrt{4*2265}=\sqrt{4}*\sqrt{2265}=2\sqrt{2265}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{2265}}{2*16}=\frac{-10-2\sqrt{2265}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{2265}}{2*16}=\frac{-10+2\sqrt{2265}}{32} $

See similar equations:

| 0.12x+0.32x=4+0.2x | | 9(y-8)=8(9+y) | | r-7.4=-0.5 | | 10x+5=5x+9 | | 3x^2-3x-1=1 | | 36=2x^2-2x | | 4(w-3)=3+3w | | 12/x=144/132 | | 12x+5x=60 | | 9x/2-1/2=13 | | (7y-2)+(3y+12)=180 | | 3-35=21x | | x+4=-3x+3 | | (3y+12)=(7y-2) | | -x+6=4x+18 | | -x+6=4x+8 | | 3x+9=-2+1 | | 6x-6=45 | | 100+2n=180 | | 18(12)=24(x-2) | | 1/4y+1/6=-3/4y+1/3 | | 5v+4v=45 | | 2(y+7)=4y | | 5x-4=1/2 | | (4x+1)=(8x-1) | | y’’–8y’+16y=0;y’(0)=1,y(0)=4 | | 7x-4(3x+2)=4(x-5) | | X^2-8x+14=2x-7 | | 3x=-3x+24A. | | x/16=4/32 | | 15^2x-4=3^2x-4 | | 4c=1/16 |

Equations solver categories